archimedes-Artificial Intelligence, Data Science, Algorithms-greece

 
Artificial Intelligence
 
Data Science
 
Algorithms

Archimedes Talks: Towards a linearly organized embedding space of biological networks by Alexandros Xenos

Dates
2024-04-05 12:00 - 13:00
Venue
Artemidos 1 - Amphitheater

 

We would like to remind you that the following talk will start in a few minutes

 

 

 

Following our Archimedes Talks Series, on 05/04/2024 at 12:00, Mr. Alexandros Xenos, a postdoctoral researcher in the Integrative Computational Network Biology (ICONBI) group led by Prof. Przulj at Barcelona Supercomputing Center will be giving a speech titled: Towards a linearly organized embedding space of biological networks.

 

You are welcome to join, either remotely following the teams link provided at the end of this announcement, or physically at our premises.

 

 

Short Bio:

Alexandros Xenos is a Postdoctoral Researcher in the Integrative Computational Network Biology (ICONBI) group led by Prof. Przulj at Barcelona Supercomputing Center. He holds a Ph.D. in Artificial Intelligence (Computer Science) from the Technical University of Catalonia (UPC) and an integrated master's from the School of Applied Mathematics of the National Technical University of Athens. During his PhD, he did a four-month research visit at Harvard Medical School, where he worked in single-cell contextual embeddings under the supervision of Prof. Zitnik. His research interests are at the intersection of network science, machine learning for data fusion and artificial intelligence. His work focuses on designing embedding methods that represent biological networks in spaces that enable downstream analysis tasks with simple linear operations, alleviating the need for computational-intensive ML models.

 

 

Abstract:

 

Low-dimensional embeddings are a cornerstone in the modelling and analysis of complex biological networks. Embedding biological networks is challenging, as it involves capturing both structural (topological) and semantic information of a graph (i.e., node labels). Typically, nodes with the same label are in the same dense subgraph (neighborhood-based similarity), but it has been shown that similarly annotated nodes can be in different network neighbourhoods while having similar wiring patterns (topological similarity).

However, current network embedding algorithms do not preserve both types of similarity, which limits the information preserved in the embedding space. Moreover, the existing methods for analyzing the embedding space of molecular networks use the vectors of the biological entities as the input for computationally intensive ML models that aid downstream analysis tasks. In contrast, in the field of NLP, they mine the word embedding space directly by doing simple linear operations between the word embedding vectors.

In our work, following the NLP paradigm, we introduce novel random-walk-based embeddings that allows mining biological knowledge directly from the embedding space. Namely, we introduce embeddings that locate close in the space genes that have similar

biological functions (either topological or neighborhood-based similar nodes). We exploit this property to predict genes participating in protein complexes and to identify cancer-related genes based on the cosine similarities between the vector representations of the genes. We also go beyond embeddings that preserve one type of similarity by using the graphlets (small, connected and induced subgraphs) to represent the network and then generate random-walks in the transformed networks.

Finally, we analyze whether it is an intrinsic property in the structure of the data (input matrix representation) that yield embedding spaces that enable downstream analysis tasks via simple linear operations. We demonstrate that the more homophilic the input network matrix representation is, the more linearly organized the resulting embedding space is, and hence, the less needed complex machine learning approaches to perform downstream analysis are. We showcase in nine multi-label (biological) and seven single-label networks that our graphlet-based methodologies embed networks in more linear spaces, alleviating the need for computationally expensive ML methods.

________________________________________________________________________________

Microsoft Teams meeting

Join on your computer, mobile app or room device

Click here to join the meeting

Meeting ID: 320 137 087 421
Passcode: MmC6Ex

________________________________________________________________________________

 

 
 

Vision

To position Greece as a leading player in AI and Data Science

image
image

Mission

To build an AI Excellence Hub in Greece where the international research community can connect, groundbreaking ideas can thrive, and the next generation of scientists emerges, shaping a brighter future for Greece and the world

 

Welcome to ARCHIMEDES, a vibrant research hub connecting the global AI and Data Science research community fostering groundbreaking research in Greece and beyond. Its dedicated core team, comprising lead researchers, affiliated researchers, Post-Docs, PhDs and interns, is committed to advancing basic and applied research in Artificial Intelligence and its supporting disciplines, including Algorithms, Statistics, Learning Theory, and Game Theory organized around 8 core research areas. By collaborating with Greek and Foreign Universities and Research Institutes, ARCHIMEDES disseminates its research findings fostering knowledge exchange and providing enriching opportunities for students. Leveraging AI to address real-world challenges, ARCHIMEDES promotes innovation within the Greek ecosystem and extends its societal impact. Established in January 2022, as a research unit of the Athena Research Center with support from the Committee Greece 2021, ARCHIMEDES is funded for its first four years by the EU Recovery and Resilience Facility (RRF).

 
 

NEWS

 
Archimedes and the Biomedical Research Foundation Share Latest Findings in AI and Medicine

Archimedes and the Biomedical Research Foundation Share Latest Findings in AI and Medicine

Archimedes and the Biomedical Research Foundation of the Academy of Athens successfully hosted a special collaborative session at the Panhellenic Working Group Seminars of the Hellenic Society of Cardiology. This session focused on innovative applications of artificial intelligence in medicine, with a particular emphasis on advancements in cardiology. Held on Friday, February 7, 2025, in Room MC2 of the Megaron Athens International Conference Centre, the event brought together leading experts to explore how artificial intelligence is transforming cardiovascular medicine.

Archimedes Reaches Milestone of 200 Publications

Archimedes Reaches Milestone of 200 Publications

Archimedes is proud to announce that its researchers have published over 200 scientific publications in top-tier conferences (NeurIPS, ICLR, ICML) and journals.Archimedes maintains a vibrant scientific community of over 130 researchers, including more than 60 senior researchers (faculty members from Greece and abroad), 12 postdoctoral fellows, and 55 PhD students, along with over 20 undergraduate interns from various disciplines.

Happy International Greek Language Day!

Happy International Greek Language Day!

Today, we celebrate the historical, cultural, and linguistic significance of the Greek language. While Standard Modern Greek often takes center stage, we at Archimedes - AI and Data Science Research Hub recognize the impressive diversity and great cultural significance of its numerous dialects. These dialects present both exciting opportunities and complex challenges for AI and Large Language Models (LLMs) because each one of them presents unique linguistic features and all of them are low resourced. That’s why we’re using cutting-edge AI to document, digitize, and analyze these invaluable linguistic treasures, ensuring their preservation and accessibility for generations to come.

Two Research Positions in Data Stream Management Systems & Big Data Management

Two Research Positions in Data Stream Management Systems & Big Data Management

We are pleased to announce the availability of two research positions in data stream management systems and big data management, to be co-supervised by Assistant Professor Odysseas Papapetrou from the Eindhoven University of Technology (TU/e) in the Netherlands and Professor Minos Garofalakis from the Technical University of Crete in Greece.

 
 

The project “ARCHIMEDES Unit: Research in Artificial Intelligence, Data Science and Algorithms” with code OPS 5154714 is implemented by the National Recovery and Resilience Plan “Greece 2.0” and is funded by the European Union – NextGenerationEU.

greece2.0 eu_arch_logo_en

 

Stay connected! Subscribe to our mailing list by emailing sympa@lists.athenarc.gr
with the subject "subscribe archimedes-news Firstname LastName"
(replace with your details)