archimedes-Artificial Intelligence, Data Science, Algorithms-greece

 
Artificial Intelligence
 
Data Science
 
Algorithms

Harnessing the Untapped Benefits of Near-Sortedness for Data Systems - Manos Athanassoulis (Boston University)

Archimedes_Talk__Athanassoulis___21_October
Dates
2025-10-21 13:00 - 14:00
Venue
Archimedes Amphitheatre (1 Artemidos Street, 15125, Marousi, Archimedes, Athena Research Center, Greece)


Title
: Harnessing the Untapped Benefits of Near-Sortedness for Data Systems

Speaker: Manos Athanassoulis (Associate Professor of Computer Science at Boston University (BU), USA, Director and Founder of the BU Data-intensive Systems and Computing Laboratory, BU, USA, and Co-Director of the BU Massive Data Algorithms and Systems Group, BU, USA)

Abstract: Two of the most common concepts in data processing is sorting and indexing. In fact, one can consider indexing as the process of adding structure (e.g., sorting) an otherwise unstructured data collection, which comes at a cost (ingestion cost to create the sorted instance of the data), which is worth-spending due to future benefits. What happens when the incoming data have some pre-existing structure (a degree of “near-sortedness”)? This can happen by virtue of the dataset (e.g., indexing timestamps of aggregated sensors with a small lag, storing mostly increasing data like stock market values), the operation (operating on previously fully sorted data that receives a number of updates, intermediate result of another operator that created near-sorted data), or data correlation (operating on a column correlated with the sort attribute of a table). Traditional indexes are not designed to exploit near-sortedness and in most cases pay the same cost as classical ingestion (as if the data has no structure). In this work we argue that a “sortedness-aware” index should offer increasingly cheaper ingestion cost for “more sorted” data without hurting read performance or any other aspect of data processing.

We present the first sortedness-aware tree index designs. The first uses smart buffering, partial bulk loading, query-driven sorting, and variable split ratio to achieve remarkable speedup for near-sorted data (10x), while we next show that we can have even better results by radically simplify the design maintaining minimal additional state to classical tree indexes and a lightweight predictor of which node to insert to next. If time permits, I will discuss some more open questions on near-sortedness in conjunction with learned indexes, LSM trees, and join processing.

Short Bio: Manos Athanassoulis is an Associate Professor of Computer Science at Boston University, Director and Founder of the BU Data-intensive Systems and Computing Laboratory, and co-director of the BU Massive Data Algorithms and Systems Group. He also spent a summer as a Visiting Faculty at Meta. His research is in the area of data management, focusing on building data systems that efficiently exploit modern hardware (computing units, storage, and memories), are deployed in the cloud, and can adapt to the workload both at setup time and dynamically, at runtime. Before joining Boston University, Manos was a postdoc at Harvard University, USA. Earlier, he obtained his PhD from EPFL, Switzerland, and spent one summer at IBM Research, Watson. Manos’ work has been recognized by awards like “Best of SIGMOD” in 2016, “Best of VLDB” in 2010 and 2017, “Most Reproducible Paper” at SIGMOD in 2017, "Best Demo" for VLDB 2023, and "Distinguished PC Member" for SIGMOD 2018, 2023, 2024, 2025 and EDBT 2025, and has been supported by multiple NSF grants including an NSF CRII and an NSF CAREER award, and industry funds including a Facebook Faculty Research Award, multiple Red Hat Research Incubation Awards and gifts from Cisco, Red Hat, and Meta.

He is currently serving as ACM SIGMOD Secretary/Treasurer 2025-2029 and has served or serving as Associate Edtior for ACM SIGMOD Record, ACM SIGMOD Availability and Reproducibility Co-Chair (2021, 2022, 2023, 2024, 2025), VLDB Ambassador for Industry Relations (2022, 2023, 2024), Industrial Track Co-chair for ICWE 2024, Proceedings Chair for VLDB 2023, Area Chair for ACM SIGMOD 2026, IEEE ICDE 2026, VLDB 2025, and IEEE ICDE 2022, Publicity Chair for VLDB 2022 and IEEE ICDE 2021, and as a PC member on multiple top data management venues.

________________________________________________________________________________

Microsoft Teams 
Meeting ID: 361 396 317 392 1
Passcode: ww9k7JE3

 
 

Vision

To position Greece as a leading player in AI and Data Science

image
image

Mission

To build an AI Excellence Hub in Greece where the international research community can connect, groundbreaking ideas can thrive, and the next generation of scientists emerges, shaping a brighter future for Greece and the world

 

Welcome to ARCHIMEDES, a vibrant research hub connecting the global AI and Data Science research community fostering groundbreaking research in Greece and beyond. Its dedicated core team, comprising lead researchers, affiliated researchers, Post-Docs, PhDs and interns, is committed to advancing basic and applied research in Artificial Intelligence and its supporting disciplines, including Algorithms, Statistics, Learning Theory, and Game Theory organized around 8 core research areas. By collaborating with Greek and Foreign Universities and Research Institutes, ARCHIMEDES disseminates its research findings fostering knowledge exchange and providing enriching opportunities for students. Leveraging AI to address real-world challenges, ARCHIMEDES promotes innovation within the Greek ecosystem and extends its societal impact. Established in January 2022, as a research unit of the Athena Research Center with support from the Committee Greece 2021, ARCHIMEDES is funded for its first four years by the EU Recovery and Resilience Facility (RRF).

 
 

NEWS

 
Archimedes Talk by Alexandra Meliou on

Archimedes Talk by Alexandra Meliou on "Data Analysis and Manipulation through a Constrained Optimization Lens"

On Tuesday 4 November, 2025, from 1:00 pm to 2:00 pm, at the Archimedes Amphitheatre (1 Artemidos Street, 15125, Marousi, Archimedes, Athena Research Center, Greece), Professor Alexandra Meliou, Professor at the College of Information and Computer Sciences at the University of Massachusetts Amherst, USA, and a visiting researcher at the Archimedes Research Center, Athena Research Center, Greece, will deliver an Archimedes talk on "Data Analysis and Manipulation through a Constrained Optimization Lens."

Exploring the Frontiers of AI and Biomechanics at ICIST 2025

Exploring the Frontiers of AI and Biomechanics at ICIST 2025

Archimedes, Athena Research Center, Greece is happy to see its work being featured at the 15th International Conference on Information Society and Technology (ICIST 2025), at Kaunas University of Technology, Lithuania, through an invited keynote speech by Dr. Serafeim Moustakidis, titled: “Bringing Biomechanics into the AI Era: A New Frontier for Gait and Joint Health.”

Archimedes Talk by Manos Athanassoulis on

Archimedes Talk by Manos Athanassoulis on "Harnessing the Untapped Benefits of Near-Sortedness for Data Systems"

On Tuesday 21 October, 2025, from 1:00 pm to 2:00 pm, at the Archimedes Amphitheatre (1 Artemidos Street, 15125, Marousi, Archimedes, Athena Research Center, Greece), Professor Manos Athanassoulis, Associate Professor of Computer Science at Boston University (BU), USA, Director and Founder of the BU Data-intensive Systems and Computing Laboratory, BU, USA, and Co-Director of the BU Massive Data Algorithms and Systems Group, BU, USA, will deliver an Archimedes talk on "Harnessing the Untapped Benefits of Near-Sortedness for Data Systems."

GameSec 2025 just Around the Corner!

GameSec 2025 just Around the Corner!

The 16th Conference on Game Theory and AI for Security (GameSec25), an event strongly supported by Archimedes, Athena Research Center, Greece will take place at the National Technical University of Athens, Greece from October 13-15 2025. "With the rapid advancement of artificial intelligence, game theory, and security technologies, the resilience and trustworthiness of modern systems is more critical than ever. The 2025 Conference on Game Theory and AI for Security focuses on leveraging strategic decision-making, adversarial reasoning, and computational intelligence to address security challenges in complex and dynamic environments.

11 Papers Accepted at NeurIPS 2025!

11 Papers Accepted at NeurIPS 2025!

We are happy to announce that 11 papers from Archimedes, Athena Research Center, Greece, have been accepted at the Thirty-Ninth Annual Conference on Neural Information Processing Systems (NeurIPS 2025)!NeurIPS is a major annual event in the artificial intelligence and machine learning community and this year it will take place from December 2 to December 7 at the San Diego Convention Center, California, USA.

 
 

The project “ARCHIMEDES Unit: Research in Artificial Intelligence, Data Science and Algorithms” with code OPS 5154714 is implemented by the National Recovery and Resilience Plan “Greece 2.0” and is funded by the European Union – NextGenerationEU.

greece2.0 eu_arch_logo_en

 

Stay connected! Subscribe to our mailing list by emailing sympa@lists.athenarc.gr
with the subject "subscribe archimedes-news Firstname LastName"
(replace with your details)