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Abstract. Today, we rely heavily on automated recommendation al-
gorithms for assisting us in making several decisions. These algorithms
are trained on large quantities of user interaction data, and as a result
they incorporate various biases of the data in their recommendations. It
is important to understand the origins of recommendation biases, how-
ever, this is becoming increasingly difficult, given the complexity of the
recommenders. To address model complexity, researchers try to provide
explanations for the behavior of the algorithms, such as counterfactual
explanations. In this work, we consider explanations for recommendation
bias, and we generalize counterfactual explanations to handle groups of
users and items. We then consider a random-walk based recommender,
and we propose efficient algorithms for computing the counterfactual ex-
planations. We perform an experimental evaluation of our algorithms
using both real and synthetic data.
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1 Introduction

Today, we rely heavily on automated recommendation algorithms for assisting us
in making several decisions, such as the content we consume, the items we buy,
or the careers we pursue. These algorithms use sophisticated machine learning
techniques that are trained on large quantities of user interaction data. As a
result, they incorporate various biases in their recommendations, where certain
groups of users or items are treated differently. Although these biases are to some
extent integral to the algorithms in order to make personalized recommendations,
they can also lead to unfair treatment of sensitive groups.

Fairness and bias in recommendations is a problem that has received signif-
icant attention in the past years [10, 22]. Different definitions of fairness have
been adopted, depending on whether fairness is defined with respect to con-
sumers or producers [3]. In most definitions, we assume that there are groups
of users and/or items, defined based on sensitive attributes such as gender, re-
ligion or age for users, and type of content for items. The recommender should
treat the groups fairly, e.g., producing recommendations of equal quality for the
two user groups, or representing proportionally the items in different categories.
When this is not achieved, we consider the recommender to be biased.
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Understanding recommendation biases is important in monitoring the health
of the recommendation system and ensuring fairness. However, given the com-
plexity of recommendation algorithms, this is becoming increasingly difficult.
To address the complexity of “black box” systems, there is a strong research
movement towards producing different types of explanations for the behavior
of algorithms, including recommendation algorithms [24]. One type of explana-
tions is counterfactual explanations [21], where we look for a small number of
changes in the input data that will achieve a desired change in the output of the
algorithm, e.g., change the classification of a data point.

In this work, we consider counterfactual explanations for recommendation
bias. Previous work on counterfactual explanations for recommendations focused
on explaining the decisions of the recommender for specific user-item pairs [17, 7,
18]. Given that bias is defined with respect to groups of users and items instead
of specific user-item pairs, we need to generalize the definition of counterfactual
explanations to handle this case. We consider different types of explanations.
First, we consider individual users, and we seek explanations as to why a user
does not get enough recommendations from a specific item category. We extend
these explanations to the case where we have a group of users instead of an
individual user. We then consider individual items, and we look for explanations
as to why they do not get recommended to a specific group of users. Again, we
extend these explanations to the case where we have an item category rather
than a single item.

We consider a graph-based random walk recommender, and we propose al-
gorithms for computing the counterfactual explanations. Our algorithms exploit
Linear Algebra tools to efficiently estimate the effect of a change to the rec-
ommendations, and they can be applied to large datasets. We perform an ex-
perimental evaluation of our algorithms using a real Movies dataset, as well as
synthetic data. Our experiments study the hardness of producing explanations
for different cases, and provide understanding of the dataset characteristics that
affect the explanations.

In summary, in this work we make the following contributions:

– We define and formalize the novel problem of counterfactual explanations
for different types of recommendation bias.

– We propose efficient algorithms for computing counterfactual explanations
for a random walk recommender that scale for large datasets.

– We evaluate quantitatively and qualitatively our algorithms on real and syn-
thetic datasets.

The rest of the paper is structured as follows. In Section 2, we provide the
definitions for our problems. In Section 3, we present efficient algorithms for
producing counterfactual explanations for recommendation bias. In Section 4,
we present our experimental evaluation. Section 5 presents the related work,
and Section 6 concludes the paper.
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2 Definitions

We are given as input a set of users U and a set of items I and a user-item matrix
D with the preferences of the users over the items. We also have a recommender
RD that is trained on the matrix D, which, given a pair (u, i) ∈ U×I, it outputs
a score RD(u, i) that is the estimation of the preference of user u for the item i.

We assume that we can define groups of users and items based on the at-
tributes of the users and items respectively. For example, we may partition users
into groups based on gender, age, or residence. Similarly, if the items are movies,
we may define groups of movies based on genre, or on release date. We are inter-
ested in defining biases that the recommender may have towards specific groups
of items or users, and provide explanations for them.

We first consider the bias of the recommender in the estimated ratings for
an individual user for a specific group of items. For example in the user-movie
scenario, we want to explain why the estimated ratings for a specific user are on
average lower for Romance movies, than for Action. Formally, let u be a specific
user, and let I ⊂ I denote the target item group. Let I = I \ I denote the items
not in the group. We define RD(u, I) = 1

|I|
∑

i∈I RD(u, i) to be the average

estimated score of the recommender for user u for the items in I, and RD(u, I)
for the complement group. We define the preference ratio of recommender RD

for item group I for user u as:

BRD
(I|u) = RD(u, I)

RD(u, I)

Given a target value θ (usually θ = 1), we say that the recommender is
biased against group I in the recommendations to user u, if BRD

(I|u) < θ. The
value θ is input to our problem, and it determines our sensitivity to the input
bias. We will usually set θ = 1; the recommender is biased if the estimated
ratings it produces for user u for group I are on average lower than those for
the complement group.

We seek counterfactual explanations for the bias of the recommender: changes
in the ratings Du of user u that will result in an increase of the preference ratio
for group I. Formally, an explanation is a subset Eu ⊂ Du of the ratings of u,
such that, if removed from D, the resulting recommender RD|Eu

is not biased.
The size of the set Eu is the complexity of the explanation. The goal is to find
small explanations that explain the bias.

We thus have the following problem definition:

Problem 1 (Individual User Bias Explanation). Given preference matrix D, a
recommender RD, a user u, a target group of items I, and a target bias value θ,
find the minimum explanation Eu such that, BRD|Eu

(I|u) ≥ θ.

We can extend the definition of bias to the case where we have a group of
users instead of a single user. In the user-movie example, we want to explain
why the average ratings of Male users for Romance movies are lower than for
Action movies. Let U ⊂ U denote the target user group. For a target group of
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items I, we define RD(U, I) = 1
|U |

∑
u∈U RD(u, I) to be the average estimated

score for the item group I, for user group U . We define the preference ratio of
recommender RD for item group I, for user group U as:

BRD
(I|U) =

RD(U, I)

RD(U, I)

Given a target value θ, we say that the recommender is biased against item
group I in the recommendations to U , if BRD

(I|U) < θ. We seek again coun-
terfactual explanations for the bias of the recommender. Let DU denote the set
of ratings from users in U . The explanation is a subset EU ⊂ DU . We have the
following problem definition:

Problem 2 (User Group Bias Explanation). Given preference matrix D, a rec-
ommender RD, a target group of users U , a target group of items I, and a target
bias value θ, find the minimum explanation EU , such that BRD|EU

(I|U) ≥ θ.

We now turn our attention to the item side, and we consider the bias of the
recommender in the estimated ratings that an individual item i receives from a
group of users U . In our user-movie example, we look at a specific movie, and
we want to explain, why this movie receives on average lower ratings from Male
users than from Female users.

Formally, let i be a specific item, let U ⊂ U denote the target user group,
and let U = U \ U denote the users not in the group. We define RD(U, i) =
1
|U |

∑
u∈U RD(u, i) to be the average estimated score of the recommender for

group U for the item i. We define the preference ratio of recommender RD f for
item i, or user group U as:

BRD
(U |i) = RD(U, i)

RD(U, i)

Given a target value θ, we say that the recommender is biased against the
group U in the recommendations for i, if BRD

(U |i) < θ. When θ = 1, the
recommender is biased against user group U if the ratings it estimates for the
users in U for item i are on average lower than those for the remaining users.

We seek again counterfactual explanations for the bias of the recommender.
Let Di denote the users that have rated item i, and Ui = Di ∩ U denote the
users in U that have rated item i. An explanation is a subset Ei ⊆ Ui of the
ratings from users in Ui. We thus have the following definition:

Problem 3 (Individual Item Bias Explanation). Given preference matrix D, a
recommender RD, an item i ⊂ I, a target group of users U , and a target bias
value θ, find the minimum explanation Ei such that BRD|Ei

(U |i) ≥ θ.

We will also consider the the bias of the recommender in the estimated ratings
that a group of items I receives from a group of users U . In our example, we
want to explain why the Romance category receives lower scores for Males than
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it receives for Females. We define the preference ratio of recommender RD for
item group I, for group U as:

BRD
(U |I) = RD(U, I)

RD(U, I)

For a target value θ, we say that RD is biased against user group U in the
recommendations for item group I, when BRD

(U |I) < θ. As in the case of the
item bias explanations we seek an explanation EU ⊂ DU , as a subset of the
ratings of the group U , that, if removed, will result in an increase in BRD

(U |I).

Problem 4 (Item Group Bias Explanation). Given user-item preference matrix
D, a recommender RD, a target item group I, a target user group U , and a
target value θ, find the minimum explanation EU such that BRD|EU

(U |I) ≥ θ.

Our definitions of bias and explanations for bias are general, and they can be
applied to any recommender. However, clearly, the exact explanations depend on
the recommendation algorithm RD. In the next section, we present a random-
walk recommendation algorithm RD that we will consider in this work, and
efficient algorithms for computing individual and group explanations.

3 Explanations in Graph Recommenders

3.1 The recommendation algorithm

As our recommendation algorithm, we will use the RecWalk algorithm [9]. We
view the user-item matrix D as a bipartite graph G with adjacency matrix:

AG =

(
0 D
DT 0

)
The RecWalk algorithm estimates the scores for user-item pairs

by performing random walks on the graph G. Let H = Diag(AG1)−1AG, where
1 is the vector of all ones, be the transition probability of a simple random walk
on the user-item bipartite graph. Let MI be an inter-item transition probability
matrix that captures relations between items, and define matrix M as: M =(
I 0
0 MI

)
. The overall transition probability matrix of RecWalk is defined as

P = αH + (1− α)M where α captures the relative contribution of each of the
two components in the random walk.

To compute recommendations for a user u, we perform a personalized ran-
dom walk rooted at u. At each step the random walk with probability (1 − γ)
transitions according to matrix P , while with probability γ it restarts from node
u. Given the stationary distribution pu of the random walk, the estimated score
of item i for user u is computed as RD(u, i) = pu(i). Note that we can use matrix
P to perform a personalized random walk rooted at any node x in the graph,
either user or item, and produce a probability px(y) for any node in the graph,
user or item. We will make use of these probabilities in our computations below.

Given this graph view of the data and the algorithm, the counterfactual
explanations that we consider consist of (directed) edges emanating users, which,
if deleted, will result in an increase in the target ratings.
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3.2 Estimating the effect of edge removals

We begin with the computation of the change in the estimated rating RD(u, i)
for a user-item pair (u, i), when deleting a user-item edge (x, y) from the graph.
Note that x may be different from u, and y may be different form i. We want to
estimate

∆ (u, i, (x, y)) = RD|(x,y)(u, i)−RD(u, i)

We will provide analytical formulas for this computation which we will then use
for the different problems we consider in this paper. For simplicity we assume
that α = 0, but our formulas can easily be extended to the case that α ̸= 0.

Recall that RD(u, i) = pu(i) denotes the personalized random walk prob-
ability of user u for item i. We use RD|(x,y)(u, i) = pu(i|(x, y)) to denote the
probability of user u for item i after the removal of edge (x, y). We want to
estimate ∆(u, i, (x, y)) = pu(i|(x, y))− pu(i). We can prove the following:

∆ (u, i, (x, y)) = pu(x)Λ(x, i, (x, y)) (1)

where

Λ (x, i, (x, y)) =

1−γ
γ

(
1

|Dx|
∑

j∈Dx
pj(i)− py(i)

)
|Dx| − 1− 1−γ

γ

(
1

|Dx|
∑

j∈Dx
pj(x)− py(x)

) (2)

In Equation 2, Dx denotes the outgoing edges from node x, and pi the stationary
distribution of the personalized random walk rooted at item i

This formula can be extended to the case where we remove multiple edges
from the node x. Let Ex ⊂ {(x, y) : y ∈ Dx} denote the set of edges removed
from x (we assume that at least one edge from x remains in the graph). Abusing
the notation, we will also use Ex to denote the set of neighbors of x from which
we remove the edges. We can estimate ∆(u, i, Ex) = pu(i|Ex)−pu(i) as follows:

∆(u, i, Ex) = pu(x)Λ(x, i, Ex) (3)

where

Λ(x, i, Ex) =

1−γ
γ

(
1

|Dx|
∑

j∈Dx
pj(i)− 1

|Ex|
∑

j∈Ex
pj(i)

)
|Dx|−|Sx|

|Sx| − 1−γ
γ

(
1

|Dx|
∑

j∈Dx
pj(x)− 1

|Ex|
∑

j∈Ex
pj(x)

) (4)

Consider now the case where we want to compute explanations for the in-
dividual user bias for user u towards item group I. Abusing the notation, let
pu(I) =

∑
i∈I pu(i); therefore,R(u, i) = 1

|I|pu(I). Let∆(u, I, Eu) = RD|Eu
(u, I)−

RD(u, I). Using Equations 3 and 4, we have:

∆(u, I, Eu) = pu(u)Λ(u, I, Eu) (5)

Λ(u, I, Eu) =

1−γ
γ

(
1

|Du|
∑

j∈Du

1
|I|pj(I)− 1

|Eu|
∑

j∈Eu

1
|I|pj(I)

)
|Du|−|Eu|

|Eu| − 1−γ
γ

(
1

|Du|
∑

j∈Du
pj(u)− 1

|Eu|
∑

j∈Eu
pj(u)

) (6)
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Consider now a group of users U and an item i. The effect of removing a
set of edges Ex from a node x, ∆(U, i, Ex) = RD|Ex

(U, i) − RD(U, i) can be
estimated as

∆(U, i, Ex) = pU (x)Λ(x, i, Ex) (7)

where pU (x) =
1
U

∑
u∈U pu(x) and Λ(x, i, Ex) is computed as in Equation 4.

When considering a group of users U and a group of items I, the effect of
removing a set of edges Ex from a node x, ∆(U, I, Ex) = RD|Ex

(U, I)−RD(U, I)
can be estimated as

∆(U, I, Ex) = pU (x)Λ(x, I, Ex) (8)

where Λ(x, I, Ex) is computed as in Equation 6.
The key observation is that the computation of the ∆-values relies on the

computation of quantities such as pj(u), pj(i) and pj(I). We can efficiently
compute these terms in a single Pagerank-like computation, by adding absorbing
nodes to the graph, and performing an absorbing random walk. We describe the
details in the Supplementary Material available at our github repository online3.

3.3 Algorithms for computing bias explanations

Individual user bias explanations. In the case of individual user explana-
tions, we want to explain why for a user u the scores of the recommender for the
target group I are lower than those for the complement group I. To find these
explanations we look for the edges Eu ⊂ Du emanating from u whose removal
will maximize ∆(u, I, Eu). We use a greedy algorithm for this task. We incremen-
tally build the set Eu, each time adding the edge (u, v) that maximizes the gain
gain(u, v) = ∆(u, I, Eu ∪ {(u, v)}) − ∆(u, I, Eu). Note that we can implement
the Greedy algorithm very efficiently. We compute for every node i in the graph
the quantities pi(u) and pi(I) only once, at the beginning of the algorithm.
Then at any iteration of the algorithm we can compute gain(u, v) with simple
mathematical operations using Equation 5. We will refer to this algorithm as
Greedy.

For comparison, we will also consider the algorithm that computes∆(u, I, (u, v))
for each edge (u, v), sorts the edges in decreasing order of the ∆-values, and se-
lects them in that order. This algorithm is more efficient as it makes only one
computation initially. We will refer to this algorithm as Sort.

Individual Item Explanations. In the case of individual item explanations, we
want to explain why for a specific item, the recommendation algorithm estimates
lower scores from group U than U . The explanations consist of edges from the
users in Ui, the users in the group U that have rated item i. The algorithm
computes ∆(U, i, (x, y)) for each edge (x, y), x ∈ Ui, y ̸= i. It then sorts the
edges according to these values, and returns the top edges that achieve the
target bias value θ.

3 https://github.com/lezaf/BiasExplain
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User-group bias explanations. In the case of user-group explanations, we
want to explain why for the user group U the scores of the recommender R for
the item group I are lower than those for the complement item group I. The
explanation EU consists of a set of changes in the ratings of the users in U that
will correct the bias of the recommender. We will consider three algorithms for
constructing the explanations, each leading to a qualitatively different type of
explanations.

The first algorithm looks for the best set of edges from U to remove. Note that
it is easy to show that we only need to consider edges (u, v) to the complement
item group I, that is, v ∈ I; otherwise, we decrease RD(U, I). The algorithm
computes the value ∆(U, I, (u, i)) for each edge (u, i), where u ∈ U , and i ∈ I,
it sorts the edges, and selects the top ones that achieve the target bias value θ.
We will refer to this algorithm as EdgeExplain.

The second algorithm builds the explanation by selecting users from U , and
removing all their edges to the complement group I. The explanation in this
case is a set of users rather than a set of edges. To compute the explanation, for
each user u ∈ U , let Eu(I) denote the set of edges from u to the group I. The
algorithm estimates ∆(u, I, Eu(I)) for all users u ∈ U , sorts them according to
the ∆-values, and returns the top ones that achieve the target bias goal. We will
refer to this algorithm as UserExplain.

The third algorithm builds the explanation by selecting items from the com-
plement group I, and removing all edges from the group U ti these items. The
explanation in this case is a set of items, rather than a set of edges. For an item
i ∈ I, we approximate the effect of its removal from group U by computing
∆(U, I, i) =

∑
u∈U ∆(U, I, (u, i)). We sort the items according to the ∆-values,

and return the top ones that achieve the target bias goal. We will refer to this
algorithm as ItemExplain.

Item Group Explanations. In the case of item group explanations, we want
to explain why for a group of items I, the recommendation algorithm estimates
lower scores from group U than U . For this case, we adopt the three different
types of explanations we described for the user group explanations, and the
corresponding algorithms.

4 Experimental Evaluation

We now evaluate our algorithms for producing explanations for the different
recommendation biases. The goal of the experiments is to understand quantita-
tively and qualitatively the different explanations we produce. Code and data
are available in our online github repository.

4.1 Datasets

We evaluate our algorithms using both real and synthetic datasets. We will now
describe our datasets and their characteristics.
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(a) Greedy explanations (b) Explanations Example

Fig. 1: Individual user explanations

Real Dataset:We use the MovieLens 100K Dataset [8] which is a dataset of user
ratings on movies. It consists of 100,000 ratings from 943 users on 1,682 movies.
There is demographic information about the users, and genre information about
the movies. We used the gender to define groups of users, and the movie genre to
define groups of movies. We used a subset of the dataset with the movies from
the Action and Romance genres. The resulting dataset consists of all users, 670
males and 273 females and 448 movies, 226 Action and 222 Romance. In our
experiments we will denote the group of Males as M and the group of Females
as F , and the Romance group as R and the Action group as A.

Synthetic Datasets: We also created synthetic datasets to study our algo-
rithms. Our datasets consist of NU = 1000 users and NI = 1000 items. Users
are partitioned into two groups, U0 and U1, of equal size, and items into two
categories, I0 and I1, also of equal size. We allocated 100 ratings per user (10%
of the items). We introduced bias in the data, where users in U0 favor items in
I0, and users in U1 favor items in I1. We control the bias with a parameter β:
For a user from group U0 (U1), with probability β we generate a rating to an
item in category I0 (I1), and with probability 1 − β to an item in category I1
(I0). In our allocation of ratings we ensure that each item has at least 5 ratings.
The goal is to study the effect of the data bias in the explanations, so we vary
the parameter β to take values in {0.5, 0.6, 0.7, 0.8, 0.9}.

We also want to investigate the effect of item popularity, so we varied the
probability distribution with which we select an item within an item category.
We generated popularity distributions for the items utilizing Zipf’s Law. For the
Zipf law parameter a we used parameters a ∈ {1, 1.1, 1.3, 1.5, 1.7}, where higher
parameter value, implies more skewed distribution, while value a = 1 results in
a uniform distribution.

4.2 Individual user bias explanations

We first experiment with individual user bias explanations. For the following we
will use B instead of BRD

for the preference ratio, and BE instead of BRD|E to
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(a) Synthetic Data Explanations (b) Greedy vs Sort

Fig. 2: Individual user explanations: Synthetic Data and Comparisons

denote the preference ratio when applying explanation change E. In the Movies
dataset, we select the target item group I to be the movies in the Romance
category (group R). We consider users with initial B(R|u) < 1, and we seek
explanations that will result in BE(R|u) ≥ 1 (target θ = 1).

To study the how the initial bias affects the complexity of our explanations,
we sampled 20 users in three different ranges of initial B(R|u) values: (0.65, 0.75),
(0.75, 0.85), and (0.75, 0.85). Figure 1a plots for the Greedy algorithm the size
of the explanation Eu and the resulting (average) preference ratio BEu

(R|u). We
observe that the more biased the nodes initially in favor of Action and against
Romance (lower B(R|u)), the larger the complexity of the explanation. However,
even for strong anti-Romance bias, we can explain it with a small number of edges
(no more than 12 for B(R|u) ≈ 0.7 and less than 5 for B(R|u) ≈ 0.9).

An example of the explanation movies is shown in Figure 1b, where we plot
BE(R|u) over the iterations of the Greedy algorithm, and the movie selected
at each iteration. The selected movies are all well-known Action movies, such as
“Die Hard”, “Mission Impossible” and “Terminator”.

We performed some additional measurements in order to better understand
the type of movies that the algorithm selects as explanations, and more specif-
ically how the popularity of the movie affects the selection. For a user u, we
compute the correlation between the ∆-values, ∆(u,R, (u, i)), of the selected
movies and their (degree) popularity (for more details see the Supplementary
Material). We observe a clear negative correlation, meaning that the movies se-
lected have small degree. It is thus the case that removing edges to fringe movies
has a stronger effect than removing edges to popular movies. This can also be
deduced from Equation 2, where the target of the selected edge must have lower
probability of reaching the target group, than the other neighbors of the user.
Unpopular Action movies are less likely to lead to the Romance category.

We also perform experiments with synthetic data, shown in Figure 2a. We
vary the bias β in the data, as well as the skewness of the degree distribution
a. We observe that as the bias increases the complexity of the explanations
increases. The skewness of the distribution does not seem to affect the explana-
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(a) Explanation size (b) Oscar & Lucinda explanations

Fig. 3: Individual item Explanations

tion size. In the synthetic data we observe an even stronger negative correlation
between the ∆-value and the popularity of the movie.

Finally, we perform a comparison of theGreedy algorithm with the heuristic
algorithm Sort, in terms of explanation size and complexity, shown in Figure 2b.
We observe that we gain considerably in efficiency (∼120 sec for the Greedy
algorithm, while∼36 sec for the Sort algorithm). At the same time we incur only
a small increase in the explanation complexity for large values of target value θ.
Thus, the sorting algorithm is a viable alternative to the Greedy solution.

4.3 Individual item bias explanations

We now consider individual item bias explanations. In the Movies dataset we set
the target user group U to be the group of male users M , and the target value
θ = 1. We consider movies with initial B(M |i) < 1, and we create again samples
of 20 movies, for three different ranges of initial B(M |i) values: (0.55, 0.65),
(0.7, 0.8), and (0.85, 0.95). Figure 3a plots the size of the explanation Ei and
the resulting (average) BEi

(M |i). We observe that the stronger the bias against
Males (lower B(M |i)), the larger the complexity of the explanation. However,
we can still explain the bias with a small number of edges (15 on average for
initial B(M |i) ≈ 0.6, and 6 on average for initial B(R|u) ≈ 0.9).

An example explanation for the movie “Oscar & Lucinda” is shown in Fig-
ure 3b. The selected movies contain known Action movies like “Jaws” or “The
Jackal”, but also Romance movies like “English Patient” or “The Wings of the
Dove”. This is because the algorithm prioritizes the selection of movies from
users with low number of total ratings, since the removal of edges from such
users has a greater effect. Also, the movies selected are popular; removing edges
to them helps the random walk to allocate more probability to the selected item.

4.4 User group bias explanations

We now consider user group bias explanations. In the Movies dataset we set
the target item group to be the Romance category R, and the target user to
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(a) User Group Explanations (b) Item Group Explanations

Fig. 4: Group explanations

be the male users M . We have that B(R|M) ≈ 0.70, so there is a bias of the
recommender against the Romance category when producing scores for the Male
users, which we want to explain. We set bias target value θ = 1.

We consider the three different algorithms for producing explanations that we
described in Section 3.3: EdgeExplain, UserExplain, ItemExplain. Each
algorithm produces a different type of explanations. We plot them together in
Figure 4a. The x-axis shows the number of edges selected and the y-axis B(R|M).
On the plot we also show the number of users selected for UserExplain, and
the number of items selected for ItemExplain, to achieve the target value.

We observe that in terms of edges removed the EdgeExplain algorithm has
the most efficient explanation, followed by the UserExplain algorithm, and
then the ItemExplain algorithm. This is expected since the last two produce
a different kind of explanations. These explanations are interesting in their own
right. TheUserExplain algorithm can explain the bias by affecting only a small
subset of 44 users, while the ItemExplain algorithm produces an explanation
with just 22 movies. Looking at the selected edges of EdgeExplain, we observed
that they involve 320 distinct users, and 148 distinct movies. The occurrence
frequency histogram for the users indicates that we never remove a lot of edges
from a user. On the other hand, the histogram for movies is more skewed, with
many movies appearing a few times, and a few movies having several edges
removed. The frequency histograms appear in the Supplementary Material.

Looking into the characteristics of the explanations, the EdgeExplain algo-
rithm tends to select edges from users with low degree and few edges towards Ac-
tion. Removing such edges has a strong effect, as it transfers significant amount
of probability to the Romance group. This is in contrast to the UserExplain
algorithm that selects users with high degree, and several ratings in Action.
Removing all of these edges results in high increase of B(R|M). There is zero
overlap between the users affected by the two algorithms.

The ItemExplain algorithm tends to select movies that are overall popu-
lar. The 22 movies selected by ItemExplain appear also in the top-100 edges
selected by EdgeExplain, while 16 out of the 22 selected movies appear in
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the top-100 most popular movies. The top-5 selections of the ItemExplain
algorithm are: “Air Force One”, “The Godfather”, “The Princess Bride”, “In-
dependence Day”, “Star Treck: First Contact”. We see that the list contains
popular movies that are also popular outside of the Action genre, such as “The
Godfather” or “The Princess Bride”.

We also experimented with synthetic data. Results appear in the Supple-
mentary Material. We observe again that as the bias increases the explanation
complexity also increases, while increasing the skewness of the degree distribu-
tion (high a values) results in higher explanation size.

4.5 Item group bias explanations

Finally, we consider item group bias explanations. We set again the target user
group U to be the group of male users M , and the target item group to be the
Romance category R. We have initial B(M |R) ≈ 0.92, so there is bias in the
recommender against Males when producing scores for Romance, which we want
to explain. We set θ = 1.

We consider again the three different algorithms for producing explanations
for groups: EdgeExplain, UserExplain, ItemExplain. Note that the selec-
tions of the algorithms are exactly the same as for the user-group case. The
resulting behavior though is different, as shown in Figure 4.

We first observe that the EdgeExplain achieves the target value much
faster, and with a steep increase. The ItemExplain algorithm coincidentally
achieves the target bias value at the same number of movies as for the user-group
case. The algorithm in this case is better than the UserExplain algorithm,
which performs much worse, both in terms of number of edges removed and
number of users affected. The UserExplain algorithm selects users with many
edges to the Action category. This increases RD|E(M,R), but it also increases
RD|E(F,R), so the increase in BE(M |R) is small. This is in contrast with the
EdgeExplain algorithm that selects edges from users with small degree, that
cause large increase to RD|E(M,R) but small increase to RD|E(F,R).

5 Related Work

The problem of bias and fairness in recommendations has received a lot of recent
attention [10, 22]. A general distinction is on whether fairness is considered at
the level of individuals or groups [4]. In recommendations in particular, there are
also many sides involved, as fairness can be examined from both the consumer
and producer perspective [3]. In this paper, we provide explanations both at the
individual and group level as well as both for the user and the item side.

Various perspectives of fairness have been considered. One perspective is
that the rating prediction errors must be similar across groups or individuals
[23, 11]. Accuracy based fairness is also formulated using pairwise metrics [1].
Another perspective is fair exposure, for example, allocating exposure to items in
recommendation lists proportional to their relevance [14, 2]. Finally, calibration
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asks that the predicted proportions of the recommended items, or groups agree
with the corresponding proportions in the user preferences [19, 15]. In this paper,
we offer a general method for explaining unfair behavior and applied it to explain
cases where there are discrepancies between predictions and group proportions.

Explainability in AI is getting increasing attention. It is achieved by using
interpretable and transparent models, or by generating post-hoc explanations
for opaque models. A common approach in the latter case are attribution-based
methods, including methods that quantify how much the output is changed
when an input variable is perturbed, and methods that quantify marginal ef-
fects of variables on the output compared to a reference model [16]. Well-known
examples of such methods are LIME [12] and DeepLIFT [13]. As opposed to at-
tribution techniques, counterfactual explanations produce small changes in the
input so that a different prediction is made [21]. In this paper, we take a post-hoc
countefactual-based approach.

There has been much work on explaining recommendation results [24]. Coun-
terfactual explanations for recommendations explore either item features, or user
actions. An example of the former is CountER that formulates an optimization
problem to generate minimal changes on the features of an item such that the
recommendation decision about the item is reversed [17]. Prince [7] follows the
latter approach for graph recommenders and looks for a set of minimal user
actions that, if removed, the top recommendation item will be replaced by a dif-
ferent item. ACCENT extends the user action approach to neural recommenders
[18]. Our work extends the user action approach for explaining unfairness. The
only other work on counterfactual explanations for unfairness in recommenda-
tions that we are aware of is [6] that follows an item feature approach.

Finally, there is a line work on graph perturbations to achieve specific prop-
erties. For example, previous research has studied the addition of edges via link
recommendations for increasing the Pagerank of underrepresented groups [20],
while rewiring edges was proposed to decrease paths to polarized content [5].

6 Conlusions

In this work we considered the problem of defining counterfactual explanations
for bias of recommendation algorithms. We considered different types of bias,
and provided definitions for the explanations for these biases. We studied the
case of a random walk recommender, and we provided efficient algorithms for
computing different types of explanations. We validated our approach with ex-
periments on real and synthetic data. For future work, we are interested in
considering other definitions of bias and fairness, and extending our approach to
more recommendation algorithms.
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